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Abstract—In this paper, we present a robust 2-D self-potential

(SP) inversion algorithm that has proven to be suitable for both

environmental and hydrogeological applications. The work pro-

posed here continues from the recent advances in theoretical and

experimental aspects of the self-potential method by detecting the

depth and the shape of shallow electrical current density sources

using the least square subspace preconditioned (LSQR) method to

compute (an approximation to) the standard-form Tikhonov solu-

tion. The preconditioner is based on the subspace defined by the

columns of the Kernel matrix and the method adopted for choosing

the fixed value of the regularization parameter is the generalized

cross-validation. The decrease of resolution, due to the fact that the

self-potential field decays quickly with the distance, is controlled

by a depth weighting matrix. A laboratory experimental setup has

been assembled for locating two buried ferro-metallic bodies of any

size at different depths using the inversion of self-potential signals

associated with the redox process. The inverse problem is solved by

accounting for the electrical conductivity distribution and the self-

potential data in order to recover the source current density vector

field. Both synthetic and real simulations, performed on a sand

model with anomalies included, provide low-error inverted models

whereas anomalies are well-detected for position and shape. The

inversion algorithm has been also applied to a field data set col-

lected in the San Vittorino Plain, located in Central Italy, in order

to identify the location of sinkholes and investigate the effects of

different resistivity structure assumptions on the streaming poten-

tial inversion results.

Key words: Numerical modelling, inversion algorithm, po-

tential field.

1. Introduction

The self-potential technique involves the passive

measurement of the electrical potential distribution at

the Earth’s surface acquired by non-polarizable

electrodes. SP anomalies are associated with charge

polarisation mechanisms occurring at depth. The two

main mechanisms are (1) the streaming potential due

to electrokinetic coupling (Birch 1998; Fournier

1989) and (2) the ‘‘electro-redox’’ effect associated

with redox potential gradients (Corry 1985; Naudet

et al. 2004; Naudet and Revil 2005). These mecha-

nisms are related to chemical potential gradients of

charges carriers creating polarization in the porous

media.

Since the first measurements of self-potential in

the 19th century, the method has been applied for

mineral exploration, oil well logging and geothermal

exploration. Early research for explaining all driving

forces that give rise an SP response can be attributed

to Marshall and Madden (1959), Sato and Mooney

(1960) and Nourbehecht (1963). Historically, the

self-potential method has been mainly used in qual-

itative analysis of the measured data. However, in the

last decades, many researches have given a more

quantitative interpretation of SP anomalies for

hydrogeological, environmental and engineering

applications.

Several graphical and numerical methods have

been developed to interpret SP anomalies including

curve matching (De Witte 1948; Meiser 1962),

characteristic points, parametric curve (Paul 1965),

derivative and gradient analysis (Abdelrahman et al.

1998) and Fourier analysis techniques (Rao et al.

1982). Assuming a simple geometry for the sources

requires a prior knowledge of the shape of the

anomalous body and most of these methods use few

characteristic points and distances, nomograms, or

standardised curves to determine the depth. Thus,

they are highly subjective and can lead to major

errors in interpreting the self-potential anomalies of

horizontal and vertical cylinders, spheres, sheets and

geological contacts. Methods using derivative anal-

ysis and gradients (Abdelrahman et al. 2003) and
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Fourier analysis are instead influenced by noise in

measured data and can lead to serious errors.

Other methods are based on the continuous

wavelet transform (CWT), which allows the charac-

terization of discontinuities or abrupt changes in the

measured signal and a quick analysis of potential

field data (Fedi et al. 2010). Gibert and Sailhac

(2008) noted, however, that the CWT is not simply

related to the source distribution, so it cannot be

easily used as an imaging method.

Recently, inverse algorithms based on optimiza-

tion techniques have proven to be very useful to

invert self-potential signals (Jardani et al.

2006, 2007; Minsley et al. 2007). Like for any

potential field approach (e.g. gravity and magnetism),

the self-potential inversion is an ill-posed and gen-

erally under-determined problem, which is addressed

by introducing model regularization. Furthermore,

the self-potential problem is known to be non-unique

(Pascual-Marqui et al. 2002). In other words, an

infinite number of source configurations can produce

the same measured self-potential field. Therefore, it is

important to add constraints or priori information

regarding the number of sources or the spatial

extension of the electrical distribution to reduce the

parameter space of the solution. This explains the

emerging interest in the combined use of geophysical

(non-invasive) prospecting methods. In addition to

the non-uniqueness associated with the source dis-

tribution, the inverted current density distribution

depends on to the knowledge of the resistivity dis-

tribution. It follows that a reconstruction of the source

current density can be biased because of the poor

knowledge of the electrical resistivity distribution,

which can be derived independently by DC resistivity

tomography or electromagnetic methods.

The aim of this work was to explore a more robust

regularization-based solution through the application

of subspace preconditioned LSQR (SP-LSQR) (Paige

and Saunders 1982) to the inversion of the electrical

potential measurements and the reconstruction of the

distribution of the source current density field. In this

sense, we present a Matlab� algorithm suitable for

laboratory and field investigations, because of its high

flexibility and reliability now reached by forward and

inversion routines, with the primary aim of extending

the approach to engineering and environmental

applications.

2. Forward Modelling

The electrical potential is a solution of the fol-

lowing elliptic (Poisson-type) equation with a source

term s corresponding to the divergence of the source

current density in a conductive medium (Stoll et al.

1995; Bigalke and Grabner 1997):

r � ðrrWÞ ¼ r � Js ¼ s; ð1Þ

where r is the electrical conductivity (Sm�1),W is

the electric potential (V), Js (Am
�2) is the source or

driving current density occurring in the conductive

medium and s denotes the volumetric current density

(Am�3). This latter parameter can be written as

(Bolève et al. 2007; Castermant et al. 2008):

s ¼ Qvr � uþrQv � u; ð2aÞ

s ¼ rr � rEH þ rr2EH ; ð2bÞ

where Eq. (2a) is valid if self-potential signals are

associated with groundwater flow and Eq. (2b) for

electro-redox potentials; Qv is the excess of charge

(of the diffuse layer) per unit pore volume (Cm�3), u

is the seepage velocity (ms�1) and EH is the redox

potential (V).

Hence, the self-potential forward problem consists

of calculating W from Eq. (1), given s and r. Using
the Green’s method of integration, the electrical

potential distribution is written as (Patella 1997):

WðPÞ ¼ 1

2p

Z
X
qðMÞ sðMÞ

MP
dV þ 1

2p

Z
X

rqðMÞ
qðMÞ � EðMÞ

MP
dV ;

ð3Þ

where x ¼ MP is the distance from the source, loca-

ted at position M, to the self-potential station at

position P, X represents the conducting subsurface,

dV is the infinitesimal volume element of the con-

ductive medium and q is the resistivity function that

characterizes the inhomogeneous and isotropic sub-

surface volume X. The first term of the right-hand

side of Eq. (3) corresponds to the primary source term

while the second term corresponds to secondary

sources associated with heterogeneities in the
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distribution of the electrical resistivity in the medium.

It is also possible to rewrite Eq. (3) as the following

convolution product, according to Jardani et al.

(2008):

WðPÞ ¼
Z
X
KðP;MÞJsðMÞdA; ð4Þ

where KðP;MÞ denotes a linear mapping function

referred to as the Kernel. The elements of the Kernel

are the Green’s functions KðP;MÞ connecting the

self-potential data at a set of measurement stations

P located at the ground surface (possibly in bore-

holes) and the sources of current density at a set of

source points M located in the conducting ground

: WðPÞ ¼ KðP;MÞ � JsðMÞ. We consider a collection

of m elementary sources (in two dimensions (x,z),

there are 2m components of the current density to

retrieve) and n observation stations P. Each element

of K is (Jardani et al. 2008):

K ¼

Kx
11 Kz

11 . . . Kx
1m Kz

1m

..

. ..
. . .

. ..
. ..

.

Kx
n1 Kz

n1 . . . Kx
nm Kz

nm

2
664

3
775 ð5Þ

To determine the elements of the Kernel, we

consider that each elementary cell used to discretize

the system has a uniform electrical resistivity and

each elementary current density can be written as

JsðMÞ ¼ mdðMÞ where m is the dipole moment, dðrÞ
is the Dirac function, and M is the position of the

elementary source. For all these elementary dipoles,

we solve the Poisson equation. The Kernel K depends

on the number of measurement stations at the ground

surface, the number of discretized elements in which

the source current density is going to be determined,

and the resistivity distribution.

To solve Eq. (1), subjected to mixed boundary

conditions, a numerical approach based on the

Galërkin formulation of the finite-element method

(Bastos and Sadowski 2003) was employed. A Neu-

mann boundary condition is usually specified at the

air-earth interface, such that n � rrW ¼ 0. Within the

earth, a Dirichlet boundary condition requires that

W ! 0 as the distance from the sources becomes

large (r ! 1).

The modelling method is a three-step process.

First, the diffusion equation (Bear 2013) is solved

with appropriate (Neuman or Dirichlet) boundary

conditions for the pressure or groundwater flow.

Then, the current source density is calculated on the

basis of previously obtained hydraulic and/or redox

gradient distribution (Js ¼ Qvu and/or

Js ¼ �rrEH). Finally, the SP signals are computed

by solving Eq. (1) with appropriate boundary condi-

tions on the electrical potential (Fig. 1). An

interactive interface was developed to call all the

functions in order to add geometry, mesh, physics

settings, boundary conditions, solvers, post-process-

ing and visualizations. During code execution, the

procedure first loads the mesh, which is created in

Netgen�, an adaptive mesh generator able to retain an

accurate forward solution without drastically increase

the number of elements, a huge problem using stan-

dard machines with limited local memories (for

further details sourceforge.net/projects/netgen-

mesher). Next, the designed algorithm requires a

priori information in terms of hydraulic and electrical

conductivities. Then, the solver is executed for the

hydraulic and the electrical problem. Furthermore, it

permits to arbitrarily include equations that may

describe a material property, boundary, source or sink

term, or even a unique set of partial differential

equations.

3. LSQR Method

Our goal is to provide a methodology for the

inversion of self-potential data to determine the spa-

tial distribution of the amplitude and direction of the

source current density vector. For this purpose, a

numerical environment in Matlab� was created, able

to load, save and control geophysical data and to

solve SP forward and inverse problems. In particular,

a large-scale iterative least-squares QR factorization

(LSQR) approach for computing solutions to the

Tikhonov regularization problem (Tikhonov and

Arsenin 1977) was employed. This work focuses on

an efficient implementation of an iterative algorithm

developed by Jacobsen et al. (2003), who discussed a

‘two-level method’ for the solution of the Tikhonov

problem. According to this methodology, the two

levels are created by a splitting of the solution space

Rn into two subspaces V and W of dimensions k and

Vol. 176, (2019) Self-Potential Data Inversion for Environmental and Hydrogeological Investigations 3609
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Figure 1
Heart of the finite element method: local, global stiffness and mass matrices and right hand side are all computed by the function FEMstatic.m

whether we use stationary simulations [after (Oliveti and Cardarelli 2017)]
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n � k, respectively. The residual is projected into the

small dimensional subspace V (the coarse grid) in

which the problem is solved with a direct method,

while the component of the solution in the remaining

subspace W is computed by an iterative algorithm.

The algorithm is based on the least squares

formulation:

v

w

� �
¼ argmin

����� bK V W½ �
v

w

� �
� by

�����
2

2

: ð6Þ

where V 2 Rn�k and W 2 Rn�ðn�kÞ are the matrices

whose columns span the subspaces V and W with

basis vectors v and w, respectively while the

‘‘stacked’’ matrix and vector represent:

bK ¼
K

kL

� �
by ¼

y

0

� �
ð7Þ

where k is the regularization parameter, L is the

depth weighting matrix and y is the self-potential data

vector. The subspace V consists of the principal k

right singular vectors in the SVD of the matrix K.

Introducing the QR factorization:

bKV ¼ QbR ¼ Y Z½ �
R

0

� �
¼ YR; ð8Þ

with Q ¼ Y Z½ � orthogonal and R upper triangular.

The source current density is obtained in the form:

x� ¼ VvþWw: ð9Þ

with w ¼ argminkZT bKWw� ZTbyk22 and

Rv ¼ YTðby � bKWwÞ.
The regularization parameter k is chosen accord-

ing to the generalized cross-validation (GCV) method

(Wahba 1990), known for its efficiency and robust-

ness. GCV intends to balance the data error and the

regularization error by means of the global mini-

mization of the generalized cross-validation function.

Numerator and denominator of generalized cross-

validation criteria can be regarded as representing the

variance of the estimated observation error, and the

bias resulting from the regularization term,

respectively.

The depth-weighting matrix in Eq. (7), introduced

for reducing the loss of depth resolution, is expressed

as (Li and Oldenburg 1998):

L ¼ ðh þ jzjÞ�b=2; ð10Þ

where L is the depth weighting (N � 2M) matrix

designed to provide cells at distinct depths similar

probabilities of obtaining non-zero values during the

inversion, h is the height of data points and the

parameter b is referred to Structural Index or Atten-

uation Rate. The b exponent plays a critical role to

correctly estimate the depth to the causative body and

it depends on the different geometric types of sources

that give rise to different decays of their field (Cella

and Fedi 2012; Abbas and Fedi 2015). Despite it

should be 2 because the used sources can be

approximated to dipoles (Fedi and Abbas 2013), in

the presented study we determined its value by trial

and error from the best fit between the reconstruction

of source current density distribution and the known

location and shape of the ferro-metallic bodies.

4. Proposed Algorithm

The whole geophysical process (data processing,

forward modelling and inversion) has been included

through an interactive Matlab� algorithm. It models

the medium under investigation using a simplex-

based finite element representation, and reconstructs

images using regularized inverse techniques. It is a

two-dimensional code which allows to solve forward

and inverse problems for electrical potential equation.

It gives also the possibility to couple groundwater

equation with electrical potential equation. Simula-

tions can be run in transient and stationary modes and

performed on heterogeneous domains with SP

anomalies included, providing low-error inverted

models whereas sources are well-detected both for

shape and position. The main steps illustrated in

Fig. 2 can be summarized as follows:

• a deterministic and local approach, which consists

of inverting for the source current density distri-

bution using the linear formulation of the forward

problem and the modified singular value decom-

position, is applied (Sect. 2);

• the decrease of resolution, due to the fact that the

self-potential field decays quickly with the

Vol. 176, (2019) Self-Potential Data Inversion for Environmental and Hydrogeological Investigations 3611
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Figure 2
Flowchart of the inverse algorithm for searching the best source current density model

3612 I. Oliveti and E. Cardarelli Pure Appl. Geophys.
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distance, is controlled by the depth weighting

matrix (Eq. 10);

• the GCV method is adopted for choosing the

regularization parameter;

• the inversion process is based on the subspace

preconditioned LSQR algorithm to compute (an

approximation to) the standard form Tikhonov

solution for a fixed value of the regularization

parameter (Sect. 3).

• when the solution x� in Eq. (9) is obtained, the

forward problem is solved together with the RMSE

absolute value. Then, when necessary, the model

x� is updated to compute new SP distribution until

the desired RMSE tolerance criterion, depending

on the nature of the problem under investigation, is

fulfilled.

To estimate the goodness of the model, the asso-

ciated Root Mean Square Error (RMSE) is defined as

follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðWcalc

i �Wobs
i Þ2

N

s
: ð11Þ

The algorithm consists of four primary subfolders:

• Meshing: contains functions for generating geom-

etry and meshes.

• Finite Element Formulation: contains all func-

tions necessary for implementing the finite

elements method.

• Inversion: contains inversion and regularization

functions.

• Graphical Output: contains post-processing func-

tions which permit to visualize results.

Separating all the functions in different folders

depending on their functionality makes the code

cleaner and easier to understand and modify.

The main of the algorithm is divided in sections,

where the operator can act to change:

• Creating Geometry and Mesh: this step is

performed by Netgen code. Read a mesh file or

Make a new mesh for 2D geometries: MakeMesh

permits to build an adaptive mesh by Netgen.

ReadMesh is able to read a .mat file generated by

MakeMesh or a .vol file generated by Netgen.

• Fixing Boundary Conditions: the algorithm uses

SetBoundary for defining boundary conditions.

Suppose you want to solve your problem and apply

non homogeneous Dirichlet boundary conditions on

top and bottom boundaries and non homogeneous

Neuman boundary conditions on remaining borders.

You can define your borders as follows :

bdFlag = SetBoundary (node,elem,’Dirichlet’,’(y=

=ymax) | (y==ymin)’,... ’Neumann’,’(x==xmin) |

(x==xmax)’)

where node is a 2 column vector containing all nodes

coordinates and elem is a 3 column vector containing

for each triangle the node numbers of the vertices.

After defining your boundaries you create vectors

containing values you want to affect to those

boundaries. For example, if we want to impose

Dirichlet boundary conditions with values zero, we

do as follows :

function DirichletBoundaryValue = dc(x)

DirichletBoundaryValue = zeros(size(x,1),1)

where dc denotes the data on the Dirichlet boundary

and y ¼ dcðxÞ returns function values at N discrete

points on the Dirichlet boundary. This input data has

to be choosen by the user. x has dimensionN � 2 and

y has dimension N � 1.

• Assembling Stiffness, Mass matrices, Right

Hand Side and Solving Linear System of the

Problem: Local, global Stiffness and Mass matri-

ces and right-hand side are all computed by

FEMstatic function whether we use stationary

simulations (Fig. 1) This function returns the

solution of the problem and the Stiffness/Mass

matrices. Code syntax is used as follows:

[A,b,u] = FEMstatic(Q,node,elem,Dirichlet,Neu-

mann,S)

Inputs:

• Q: sink source;

• node: node coordinates;

• elem: mesh connectivities;

• Dirichlet, Neumann: boundary edges;

• S: material properties

Vol. 176, (2019) Self-Potential Data Inversion for Environmental and Hydrogeological Investigations 3613
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• in the case of ground water flow,

it is the hydraulic conductivity,

• in the case of electrical potential,

it is the electrical conductivity;

Outputs:

• u: solution of the problem;

• A: Stiffness matrix;

• b: right-hand side;

• Inverse Problem: The inverse problem consists to

recover the horizontal and vertical components of

the source current density. It can be done with the

function:

x = invlsqr(K,L,y,lambda,V,max,stop); Inputs:

• K: Kernel matrix;

• L: depth weighting matrix;

• y: vector of observed data;

• lambda: regularization parameter;

• V: principal right singular vectors of K;

Output:

• x: solution of the problem;

The function invlsqr implements the subspace

preconditioned LSQR algorithm to compute (an

approximation to) the standard-form Tikhonov

solution x for a fixed value of the regularization

parameter k. The preconditioner is based on the

subspace defined by the columns of the matrix V

whose columns should be ‘‘smooth’’ and preferably

chosen such that a significant component of the

exact solution lies in the range of V. The parameter

max is the maximum allowed number of iterations

(default value is maxit ¼ 300). The parameter stop

is used a stopping criterion for the norm of the least

squares residual relative to the norm of the right-

hand side (default value is tol ¼ 1e�12). The output

holds all the solution iterates as columns, and the

last iterate xð:; endÞ is the best approximation.

Another important step in the inversion process is

the choice of the regularization parameter. It is

calculated using the function named Regulariza-

tionParameter adopting the GCV method.

For example, suppose we want to compute the

regularization parameter with the GCV method, we

do like this:

lambda = Regularization Parameter(’GCV’,

’TIKHONOV’); 200 logarithmically distributed reg-

ularization parameters are generated, and GCV

function is plotted for these values. Then the mini-

mizer of the GCV function is computed via fmin.

5. Synthetic Example

The efficiency of the algorithm based on LSQR

approach was firstly tested by a numerical simulation

model. The source used for synthetic example is a

vertical iron bar with a height of 7 cm and a width of

3.5 cm, located at a depth of 4 cm to the top (Fig. 3a).

The finite-element mesh is made of rectangles

(64�32 cells). The electrical conductivity was

assigned as shown in Fig. 3b in order to simulate the

vadose and the phreatic zones. Self-potential signals

obtained by solving the forward problem (Fig. 3c)

were contaminated by a zero-mean Gaussian noise

having a standard deviation of 2 %. The inverse

problem was solved choosing different values for the

depth-weighting exponent b (integers between 0 and

3). The best depth estimates occurred for b = 3. The

inverse solution, shown in Fig. 3d, recovers reason-

ably well the shape and the position of the principal

source as well as its amplitude. The RMSE value

results in 3%, close to the noise level added, under-

lining the reliability of the inverse method.

6. Laboratory Experiment

A controlled experiment, inspired by the works of

Castermant et al. (2008) and Rittgers et al. (2013),

was designed to apply the inversion algorithm pre-

sented here in an effort to recover the 2D vector

distribution of source current throughout a tank for

two purposes:

• localizing nonintrusively active corrosion pro-

cesses at an intermediate scale, between the core

sample and field scales;

• detecting the major causative sources of observed

electrical disturbances of any size at different

depths.

An electrochemical system was developed to

facilitate corrosion of iron bodies inserted in

3614 I. Oliveti and E. Cardarelli Pure Appl. Geophys.
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calibrated sand infiltrated by water. The iron objects

served to transmit electrons between the electron

donor and oxygen used as the terminal electron

acceptor. The first step in corroding iron consists in

its oxidation to ferrous ions according to Fe !
Fþ2

e þ 2e� in the lower part of the metallic body.

Then, FeðIIÞ ions are further oxized to form ferric

ions (FeðIIIÞ) according to Fþ2
e ! Fþ3

e þ 1e�. In this

latter oxidation reaction, the formation of a green rust

called fougerite, which may occur away from the

erosion, is an intermediate step.Therefore, the elc-

trons flow in the iron piece providing the source

current density Js. These electrons are used to reduce

oxygen according to 1=4O2 þ 1=2H2O þ e� ! OH�

at the bottom of the iron bar. Consequently the redox

reaction for iron is Fe þ 3=4O2 þ 1=2H2O !
FeOOH. This sequence of redox reactions is

responsable for:

• a perturbation of the distribution of the redox

potential in the vicinity of the iron bar: the redox

potential can reach hundreds of millivolts close to

the top surface of the tank (because of the effect of

the oxygen) and is close to 0 mV or strongly

negative around the metallic object as it corrode .

This indicates reduced conditions close to the iron

object;

• a vertical gradient in the redox potential at distance

from the iron bar: the far field contribution can

vary mainly with depth and range from hundreds of

mV at the top surface of the tank to � 50 mV at the

bottom. This feature implies an abrupt change from

oxidizing to reducing conditions. It is likely that

the chemical reactions at the surface of the iron bar

consumed the dissolved oxygen of the pore solu-

tion and make its diffusion slower;

• a depletion in the concentration of oxygen inside

the tank;

• a dipolar anomaly in the vicinity of the metallic

object, negative above the metallic pipe and

positive below it;

• a basic pH front diffusing inside the tank. The

positive or basic pH anomaly developed near the

top of the vertical pipe suggests that the reduction

processes at the surface of the upper half of the

vertical pipe helps to produce OH� ions in solution

Figure 3
Synthetic example. a True source current density. b Distribution of the electrical conductivity. c The self-potential signal calculated at the

surface of the model (z ¼ 20cm). d Result of the inversion using LSQR algorithm

Vol. 176, (2019) Self-Potential Data Inversion for Environmental and Hydrogeological Investigations 3615
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above the phreatic surface. As the metallic body

corrode, the pH increases above it;

• the formation of a crust on the surface of the bar,

probably responsible for an increase of the resis-

tivity at the surface of the iron bar.

The self-potential signals were measured at the

surface (at different time lapses) and inside the tank

on a regular grid at the end of the experiment. Also

electrical conductivity distribution within the tank

was determined because it is required in the formu-

lation of the kernel matrix used for localization, so as

to represent a more realistic scenario in application.

This type of experiment is extremely complementary

to field measurements, allowing to test the physics of

these problems, and providing relative orders of

magnitude for the material properties. In this sense,

the occurrence of a self-potential dipolar anomaly

and the role of the electrical resistivity distribution

are the major issues to be addressed.

6.1. Material and Methods

The laboratory experiment was conducted in the

Plexiglas cylinder adopted by De Donno (2013) for

Figure 4
Sketch of the experimental setup showing the location of depth SP data points (upper right) and the position of surface data points (lower

right) for the actual experiment, the iron bar installed during placement of sand (upper left) and patterns of ferric staining of pore fluid and

sand below the phreatic surface at the conclusion of the study (lower left)

3616 I. Oliveti and E. Cardarelli Pure Appl. Geophys.



www.manaraa.com

acquisition of frequency-domain electrical tomogra-

phy data. The tank having a height of 25 cm and a

diameter of 50 cm was filled with silica sand to depth

of 20 cm by taking care to avoid air entrapment

(Fig. 4). The material properties of the sand are

described in Table 1. The sand was added in uniform,

submerged layers to a standing water column. Each

newly added layer was sprinkled over the surface of

the standing water and allowed to settle out of

suspension before it was combed and tamped to

remove cavities and air bubbles and mixed uniformly

with the underlying sand. This study was carried out

during two phases called experiments 1 and 2, each

over the course of about two months. Experiment 1

was performed from early to late winter of 2016 as a

proof of concept, where a vertical metallic body

consisting of a rectangular piece of iron with a

thickness of 2.5 cm and a height of 11 cm was

centered at the phreatic surface (Fig. 3). Experiment

2 was carried out with the same setup and procedure

during the summer of 2017, where a 9.5-cm-diameter

iron sphere was buried and centered through and in

the capillary fringe within the tank (Fig. 5). In both

experiments the phreatic surface was maintained

constant by adding small amounts of water to the

base of the tank through a vertical plastic tube

installed prior to filling with sand. A hood filter-paper

was inserted inside the tank upon the phreatic surface

for reducing evaporation. A total of 49 holes were

drilled through a Plexiglas plate every 5 cm in an 77

grid and used as a template for electrode placement

and manual insertion at five elevations. Because the

SP electrodes were not permanently installed

throughout the tank, this plate was fitted to the tank

to allow for accurate repopulation of the data

collection grid for the duration of the study.

Both experiments began by first taking measure-

ments at the surface of the tank at the 49 positions

indicated in Fig. 4b and then collecting data along the

cross section shown in Fig. 4a to further explore the

nature of the SP signals, once significant surface

anomalies were observed to develop. These data were

manually collected throughout the tank at 4-cm-depth

intervals from 0- to 20-cm depth, resulting in a total

of 53 measurements at the end of experiment. These

latter were performed with Ag/AgCl non-polarizing

electrodes (pellet electrodes with a diameter of 2 mm,

a length of 4 mm and a exposed wire of 70 mm) and a

calibrated voltmeter (ABEM Terrameter SAS300

resistivity meter with a sensitivity of 1lV and an

internal impedance of 10 MX). These micro Ag/AgCl

electrodes were adopted by inserting their wires into

a 1-cm-diameter flexible plastic tube (to minimize the

invasiveness of the depth measurements) and thread-

ing them with banana plugs. To avoid damage and

Table 1

Properties of the sand used in the experiments

Physical characteristics Chemical analysis

Unit weight c (kg m�3)

1300� 2500

Silica oxide—SiO2 (%)

90� 96

Granulometry (mm) 0:1� 0:63 Iron oxide—Fe2O3 (%) 0.13

Particle shape polyhedral Aluminum oxide—Al2O3 (%)

1.35

Potassium oxide—K2O (%)

1.1

pH 7� 8

Figure 5
Cross section of the cylinder showing the elevation of the established phreatic surface and the metallic body buried in the capillary fringe
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insertion trauma, electrodes were placed into a thin

plastic cover and then used to manually probe the

sand at depth throughout the tank with minimal

introduction of oxygen to the system (Fig. 6).

The reference electrode for the self-potential

measurements should be ideally placed at infinity,

where the potential is assumed to be zero. The

reference electrode was collocated at the upper side

of the tank to be far from the perturbed zone,

approximately 2 cm below the surface of the sand

(Fig. 4b). Bulk electrical-conductivity distribution in

the tank was determined by performing a 2D

resistivity tomography using Syscal-Pro resistivime-

ter (IRIS Instruments) with 10 channels and a dipole-

dipole array. The maximum ‘‘a’’ and ‘‘n’’ value used

are 5 and 6, respectively. Data were collected

utilizing 17 gold electrodes along a single midline

with electrodes spaced 2.5-cm apart (Fig. 7).

Electrical resistivity tomography (ERT) dataset

were inverted with the VEMI algorithm - Versatile

interface for Electrical Modelling and Inversion-,

built within the EIDORS environment (Adler and

Lionheart 2006). This algorithm is able to perform

both 2D and 3D inversion, by solving the forward

problem with a finite-element approximation of the

Poisson equation governing the physical problem

while inversion is carried out using a Gauss–Newton

formulation (De Donno 2013; De Donno and Car-

darelli 2014, 2017). The code incorporates the

electrode size (penetration depth for rods and plate

Figure 6
Photos showing the Ag/AgCl non-polarizing electrodes and the high-impedance voltmeter during the SP data acquisition along the cross

section

Figure 7
Photos showing the gold electrodes and the Syscal-Pro resistivimeter during the resistivity data acquisition along the central profile of the

measuring grid
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length for surface electrodes) within the forward

modelling. It is also possible to add a priori

information to the inversion process. In this particular

case, for all the boundaries, Neumann-type boundary

conditions were assumed.

6.2. Results

Self-potential measurements were performed for

several weeks at the top surface of the tank. The

collected self-potential data were corrected as illus-

trated in Fig. 8 and gridded by kriging with a linear

variogram model. Before introducing the metallic

objects into the tank, monitoring was conducted with

Ag/AgCl electrodes inserted into the silica sand at 49

locations. The average value of these preliminary

measurements was assumed as back- ground noise

and subtracted from all the actual SP signals associ-

ated with the redox potential gradient. In addition,

during the actual experiment the electrode drift was

checked after each survey and removed from the raw

data. The drift was calculated as the difference

between the tip-to-tip potential recorded between the

reference and a working electrode before and after

each 2D surface data set. This difference was then

divided by the total number of measurements. After

these steps, the measurement performed in position 1

of Fig. 8 was subtracted from all the data to reallocate

the first data to zero (reference point). The first

electrode is used as a common reference for each

profile and over time.

Figure 9 shows the progressive development of

the negative SP anomaly located above the vertical

bar during experiment 1.

Figure 10 shows the surface self-potential maps

for the experiment 2, indicating corrosion of the iron

sphere during the monitoring period.

On the 6th and 8th week of two experiments,

respectively for the bar and the sphere, the negative

surface anomaly, indicating a flux of electrons

through the metallic bodies, was deemed to have

reached a steady-state condition. At this step, SP data

were collected at different depths on the 2D vertical

midsection as shown in Fig. 11a, b. The polarity of

the anomaly agrees with field observations (Sato and

Mooney 1960) and the amplitude is similar to those

reported in the laboratory by Rittgers et al. (2013).

The self-potential distribution has a dipolar character,

with a positive anomaly located in the bottom part of

the metallic objects and a negative anomaly located

in the vicinity of their top part.

Figure 12 illustrates the results of 2D inversion of

surface electrical-resistivity measurements. Resistiv-

ity varies from 200 Xm in the saturated portion of the

tank to 3500 Xm close to the surface of the tank. Note

the vertical and horizontal gradients in this field,

resulting from the vertical variations in water satu-

ration and subhorizontal variations in pore fluid

conductivity likely due to varying ferric ion species

concentrations. Since the parameter did not vary

significantly between the two experiments as to alter

the redox kinetics between the two tests, it is assumed

the same resistivity model for the experiment 2.

After the two experiments, the objects were

removed from the tank and evidence of corrosion

was observed on their surfaces (Fig. 13). It was

possible to notice that the colour of the sand in the

vicinity of the iron bar turns into a blue-greenish

Figure 8
Self-potential data processing. a Three steps to obtain correction of

raw SP data. b Configuration of the sandbox used in the

preliminary test with the position of the electrodes
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colour over time. If the sand is exposed to air, this

colour turns to ochre.

The resistivity model and potential data at depth

were used as input in the inversion for Js to localize

the causative source bodies. In the first step, the

kernel computation accounted for the electrical

resistivity distribution (Fig. 12) and for the insulating

boundary conditions applied to the system and

governed by the tank walls. In the second one, the

reconstruction of the electric source current density

required self-potential data along the cross-section

perpendicular to the tank (Fig. 11a, b). Figure 14a, b

illustrate 2D inversion results, where the magnitude

of the recovered source current density distribution is

calculated using the recovered 2D vector field of

source current density distribution. The development

of a SP anomaly associated with the corrosion rate of

the metallic objects is clear. Using the GCV approach

to selecting an appropriate regularization term and

imposing weighted smoothness constraints on depth

as described in Sect. 3, the inversion for the iron bar

returns a predominantly vertical current density that

is elongated in the z-direction (Fig. 14a), which

means a single dominant vertical dipole extending

from top to bottom of the body. Regarding the second

experiment, although the shape of the metallic sphere

is not perfectly reconstructed, the amplitude source

current distribution reveals indication of its position

(Fig. 14b). In fact, the vertical EH gradient stronger

than the horizontal one, in combination with a lower

water saturation in the upper region of the tank,

resulted in a more spatially extensive and larger

amplitude SP anomaly and a vertically elongated

current density. The coordinate discrepancy could

mainly due to the spatial refinement of the kernel

matrix and resultant model parameterization spacing

used for this study. Additional constraints such as

object’s location, size, and orientation would help to

ensure that source currents in the recovered model

were predominantly in the exact position but they

were not applied to the inversion procedure so as to

represent a more realistic scenario where the target

object’s dimensions are unknown.

However, for both cases the results of the

inversion were found to be in very good agreement

with the measured distribution of the redox potential.

There is very good comparison between the measured

and recovered SP distribution in terms of trend with a

negligible change in values (RMSE = 10 mV for

experiment 1 and RMSE = 8 mV for experiment 2),

demonstrating that this inversion process is useful in

reconstruction of the source current density distribu-

tion at depth. It is worth to underline that the estimate

of the shape and the position of the main sources is

given higher priority than the reconstruction of their

strength.

Note that the models are obtained by setting b ¼
3 and the results confirm that the causative source is

recovered at its correct position (Fig. 14), while there

is not a good agreement between the experimental

and modelled locations for b ¼ 2 (Fig. 15).

7. Field Survey: The San Vittorino Sinkhole Plain

Finally, in order to identify the location of sink-

holes, the inversion algorithm was applied to a field

data set collected in the San Vittorino Plain, located

in Central Italy, along the Velino River Valley. The

spatial distribution of sources provides useful infor-

mation that can subsequently be interpreted in terms

of physical processes that generate the SP data. The

geological setting and details of the forward mod-

elling has been presented by Oliveti and Cardarelli

(2017).

The middle valley of the Velino River and the S.

Vittorino Plain are the areas of discharge of important

fractured carbonate aquifers belonging to the car-

bonate platform domain (Petitta 2009). The

development of sinkholes in the study area is mainly

due to deep suffusion and deep piping processes,

linked to fluid upwelling along fracture-fault systems

and to dissolution (by H2S and CO2) in the conti-

nental deposits (Centamore et al. 2009). The wide

circulation of waters in this area, which includes the

presence of the Peschiera Spring system with a rel-

evant discharge rate of about 18 m3s�1, emphasized

the action of karst processes. In addition, the

bFigure 9

Sequence of 2D SP data (plan-view) collected on the surface of the

sand in experiment 1. Redox processes resulted in the development

of a - 45 mV anomaly in 2 months. Black crosses indicate

positions of the self-potential stations
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minimum depth to the water table in the alluvial-

detrital deposits, the complex hydrodynamics of

subsurface water discharge and the aggressiveness of

waters in some sectors play a crucial role, in devel-

oping sinkholes.

7.1. Data Acquistion

Cardarelli et al. (2014) employed self-potential

method in combination with electrical and seismic

tomography for detection of piping sinkholes in the

San Vittorino Plain.

We focused only on the results of the ERT and SP

surveys performed on the line illustrated in Fig. 16,

where surface evidence of a piping sinkhole appeared

with the formation of a small water pond (around 2.0

m diameter) after about one year from the geophys-

ical measurements (Fig. 17). The goal was to verify

that negative SP signals are associated with the

position of this sinkhole (marked as ‘‘A’’ in Fig. 16).

ERT line was carried out using Iris Syscal Pro

resistivity meter equipped with 48 electrodes

Figure 13
Picture showing the almost totally clean surface of the bar after a

week (upper) and the presence of lepidocrocite at the end of the

experiment (lower)

Figure 12
2D resistivity tomography. The resistivity ranges from 200 Xm in

the saturated portion of the tank (and in the capillary fringe) to

nearly 3500 Xm close to the top surface of the tank

bFigure 10

Development of a - 60 mV anomaly in less than two months

during experiment 2. Black crosses indicate positions of the self-

potential stations

Figure 11
2D vertical cross sections of SP data collected at the end of

experiments. a A relatively large dipolar perturbation in the

electrical potential field can be seen to have developed along the

vertical iron bar. b Self-potential signals produced by the metallic

sphere exhibits a clear dipolar distribution with a negative pole

located near the surface of the tank and a positive pole located at

depth
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(stainless steel stakes) spaced 2 m apart, depending

on the target depth and the required resolution. ERT

2D pseudosection was inverted using the VERDI

algorithm (Cardarelli and Fischanger 2006). The

pole-dipole array was employed, as it combines

consistent signal strength with good resolution and

depth of investigation.

SP measurements were collected with Pb/PbCl2

non-polarizable electrodes and ABEM Terrameter

SAS300 resistivity meter using a simple scheme for

data acquisition with a reference (fixed) electrode and

a moving one. The SP contribution of the main

groundwater flow in the SW-NE direction towards

the Velino River (Petitta 2009), which can be

considered as linear on first approximation, was

removed from the raw data in the x and y-directions,

by a linear interpolation along both directions.

7.2. Inversion of Field Data

Because sinkholes are associated with self-poten-

tial and electrical conductivity anomalies, the

inversion was performed with both field SP and

ERT data for delineating the location of the piping

sinkhole. In fact, the self-potential method is the only

geophysical method that is sensitive to the flow of

groundwater while the inversion of the resistivity data

provides the distribution of electrical conductivity,

which is sensitive to the water and clay contents of

the shallow cover. On the other hand, also seismic

refraction tomography (SRT) was very effective for

locating the low-stiffness (poor-velocity) area which

is associated with the effect of existing or previous

piping phenomena.

The results of the ERT and SRT investigations are

reported in Fig. 18. The shape of the anomaly ‘‘A’’

(marked by a black dashed line) corresponds to the

conductive geometry in the ERT section in Fig. 18a.

This anomaly is clearly U-shaped in the SRT section

(Fig. 17b) but is not well resolved in depth by ERT,

probably because of the effect of the water table,

which is supposed to be at about 3–5 m depth, as

indicated by seismic velocities above 1500 ms�1 .

Anyway, the ERT and SRT anomalous areas confirms

the geometrical reconstruction and identifies mor-

phologies that suggest the presence of an incipient

sinkhole.

Figure 14
Inversion results showing magnitude of the current density

distribution Js for the iron bar (a) and the sphere (b) for b ¼ 3

Figure 15
Inversion results showing magnitude of the current density

distribution Js for the iron bar (a) and the sphere (b) for b ¼ 2

3624 I. Oliveti and E. Cardarelli Pure Appl. Geophys.



www.manaraa.com

The result of the application of the inversion

algorithm to the self-potential anomaly observed at

the top surface is shown in Fig. 19. The positions of

the insulating boundary conditions and the reference

electrode were used to determine the kernel. The

solution depends on the value of the regularization

parameter k and a prior model. To determine the

value of k the GCV method was used while no a prior

model was adopted. A depth-weighting matrix (see

Sect. 3) was introduced to reduce the loss of depth

resolution and to force the source to depth within the

model space. The behavior of the kernel matrix with

depth is influenced by the chosen norm. To overcome

the problem ambiguity in case of underdetermined

systems, one must incorporate additional constraints

in the solution. In its simplest form, this leads to the

computation of the minimum-length solution, which

leads to shallow distributions of the sought property.

On the other hand, the use of other weighted norms

leads to a more general regularization problem of

Tikhonov form. For instance, the use of a second

derivative leads to smooth distributions of the

property around the center of the solution domain

(Fedi et al. 2005). The source (Fig. 19a) and the

negative anomaly (Fig. 19b) are located in corre-

spondence with the incipient sinkhole markes as A.

Although the inversion of surface self-potential data

tends to generate a shallower source current density

distribution (Fig. 19a) because the sensibility of the

self-potential field decays quickly with the depht, the

proposed approach permits however highly precise

localization of the sinkhole. Negative anomalies,

associated with the percolation of water in the

sinkhole, are of a few tens of millivolts as showed

by Jardani et al. (2006). It is worth noting that there is

also a minor anomaly likely associated with a shallow

smaller sinkhole at x = 125 m. A comparison between

the self-potential data measured at the ground surface

and the self-potential values calculated from the

inversion process along the same profile is shown in

Fig. 20. It is possibile to see a good agreement

between the model and the data (RMSE = 2 mV).

This indicates clearly that self-potential signals can

be used to observe remotely the pattern of ground-

water flow (or changes in this pattern) and to detect

the occurrence of sinkholes when the support volume

Figure 16
Aerial plan of the surveyed area and position of the ERT and SP

line

Figure 17
Piping sinkhole phenomena near the area A [after (Cardarelli et al. 2014)]
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of the source is small with respect to the distance

between the position of the center of the source and the

reference point. Therefore, the joint interpretation of

ERT and SRT allowed to detect anomalies zone

associated with the piping process, although only SP

measurements could distinguish the presence of a water

flow (active piping) at the time of measurement.

8. Conclusion

The aim of this work was to apply a inversion

algorithm implemented in Matlab� in an effort to

recover the 2D vector distribution of source current

for two purposes: (1) to localize the major causative

sources of observed electrical disturbances and (2)

test the reliability of the algorithm. We explored

thoroughly potential and limits of quantitative

reconstruction of self-potential distribution for envi-

ronmental and engineering applications, starting from

the controlled laboratory conditions and ending with

field investigations.

Thanks to the experimental apparatus which was

adopted, we could simulate SP anomalies observed in

the vicinity of buried metallic objects. Preliminary

tests have highlighted the main problems due to sat-

uration, electrode effects and sand performance.

These preliminary measurements seem to be essential

to ensure the generation of a large-amplitude SP

response and to remove potential errors into recov-

ered datasets. The physical model built up in the

laboratory have demonstrated that, to produce SP

signals associated with a redox potential gradient, an

electronic conductor localized in the capillary fringe

has to intercept an area of strong redox potential

gradient. The generation of an electrical current in the

metallic material is associated with the corrosion of

the metallic material and the formation of a dipolar

SP anomaly. This feature implies an abrupt change

from oxidizing to reducing conditions. It is likely that

the chemical reactions at the surface of the iron

bodies consumes the dissolved oxygen of the pore

Figure 18
a Inverted model of ERT line. b Inverted model of STR line [after

(Cardarelli et al. 2014), modified]. Black arrow indicates the

sinkhole marked as A. Black dashed lines indicate the shape of the

anomalous zones

Figure 19
Inversion results for the current distribution Js. a Magnitude of the

inverted two-dimensional streaming current source density

accounting for the resistivity distribution shown on Fig. 15.

b Distribution of the reconstructed self-potential signals

Figure 20
Comparison between the predicted self-potential signals (empty

circles) and the self-potential data measured along profile (filled

circles)
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solution and make its diffusion slower. The corrosion

modifies the conductivity distribution (by forming a

resistive crust on the surface of the metallic object)

and the distribution of the redox potential in the

vicinity of the metallic object.

Simulations with Gaussian noise, performed on a

heterogeneous model with a synthetic anomaly

included, provide low-error inverted models whereas

sources are well-detected both for shape and position.

The decrease of resolution, due to the fact that the

self-potential field decays quickly with the distance,

is controlled by the numerical procedure even though

the amplitude response is not completely satisfactory

whereas there is not an adaptive mesh. The adopted

depth weighting of the kernel is aimed at reducing the

loss of depth resolution, and it effectively forces the

sources to depth within the model space to recover

more realistic and meaningful models.

Laboratory and field investigation results have

confirmed the reliability of the proposed algorithm.

The presented inversion approach demonstrated to be

appropriate for reconstructing of source current den-

sity distribution in terms of location and shape. In

fact, there is a good agreement between the measured

and predicted SP signals, as shown by the resulting

approximations of both synthetic and true model. The

causative source was recovered at its correct position

when the depth-weighting exponent was set to values

close to 3. This indicates clearly that the inversion

algorithm can be used to observe remotely the pattern

of groundwater flow (or changes in this pattern) and

to detect the occurrence of sinkholes, as well as the

buried SP sources at depth in regions where elec-

tronic conductors exist. In light of this the goal to

develop an accurate and stable finite element algo-

rithm to solve forward and inverse problems for the

self-potential has been achieved. Future work should

concern further developments on the optimization of

the inversion approach, looking also at the 3-D for-

mulation and new engineering and environmental

applications. For instance, this approach to modeling

SP data could be used in detecting and imaging

corroded bar in armed concrete or in locating elec-

trically conductive mineral deposits such as

disseminated or massive sulfide ore deposits. In this

sense the algorithm developed in this work including

the whole geophysical data processing, can be

improved through the insertion of new functions in

order to extend the basic approach to allow for real

scenarios where anomalies are due to deeper sources.
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